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Abstract

We introduce and study the notion of shu�e residual of a language L: the set containing the
words whose shu�e with L is completely included in L. Several properties and a characterization
of the shu�e residual of a language are obtained. The shu�e closure of a language L (the
smallest language that is shu�e closed and contains L) is investigated. Moreover, conditions
for the existence of maximal languages whose shu�e residual equals a given language are
obtained. The paper also considers an operation dual to shu�e, namely scattered deletion: the
scattered deletion of a word w from u consists of the words obtained by sparsely deleting from
u the letters of w, in the order in which they appear in w. The scattered deletion residual
and scattered deletion closure of a language are de�ned and studied. Finally, relationships and
interdependencies between shu�e, scattered deletion, and other insertion and deletion operations
are obtained. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The shu�e operation, being in some sense a mathematical model of parallel compu-
tation, has been intensively studied in formal language theory. For example, some types
of regular expressions of shu�e operators are dealt with in [1, 2, 13–17]. A related de-
cidability problem for commutative regular languages is solved in [8]. A constrained
form of shu�e product, namely the literal shu�e is de�ned in [3], while a special kind
of literal shu�e product of a language is studied in [9]. A relation between shu�e
closed languages and automata is studied in [7]. Shu�e operations on partial ordered
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sets can be found in [4, 5]. A systematic study of insertion operations, which are related
to the shu�e operation, is contained in [18], and a continuation of this line of research
can be found in [11].
This paper introduces the notion of shu�e residual of a language L as consisting

of the words whose shu�e with words in L is completely included in L. Properties
and characterizations of the shu�e residual of a language are obtained. Moreover, the
shu�e closure of a language L, which is the smallest shu�e closed language that
contains L, is characterized. Finally, conditions for the existence of maximal languages
whose shu�e residual equals a given language are obtained. In addition, the paper
addresses similar issues related to a dual notion of shu�e, namely scattered deletion
[18]. Relations between shu�e, scattered deletion, and other insertion and deletion
operations like insertion, deletion and dipolar deletion are also obtained.
The paper is organized as follows. The end of this section contains some basic

formal language de�nitions and notations. In Section 2 the notion of shu�e residual
of a language is de�ned. Some properties of the shu�e residual of a language are
obtained, as well as a characterization of the shu�e residual of a given language L.
The second notion to be considered in the section is the shu�e closure of a language,
introduced in [12]. A characterization of the shu�e closure of a given language is
obtained. The shu�e closure of singleton sets is also considered.
Section 3 addresses the issue of the maximal language whose shu�e residual equals

a given set L. Several conditions for the existence of such languages are obtained.
Finally, a generalization of the notion of shu�e residual is introduced.
Section 4 investigates issues similar to those of Section 2, but this time for an

operation that is, in some sense, “inverse” to the shu�e operation: the scattered deletion
operation. (The scattered deletion of a word w from u consists of sparsely deleting from
u the letters of w, in the order in which they appear in w.)
Finally, Section 5 studies relations and interdependencies between shu�e, scattered

deletion and other insertion and deletion operations like insertion, deletion and dipolar
deletion. A property of shu�e-base of a language is also given.
In the following, an alphabet X is a �nite nonempty set. The cardinality of X ,

i.e. the number of letters in X , is denoted by |X |. Let X ∗ be the free monoid generated
by X under the catenation operation, and let X+ =X ∗\{1}, where 1 denotes the empty
word of X ∗. For the sake of simplicity, if X = {a} then we write a+ and a∗ instead
of {a}+ and {a}∗. If L⊆X ∗ then L+ denotes the set of all possible catenations of
words in L, and L∗=L+ ∪{1}. In particular, if L= {w}, then we write w+ and w∗
instead of {w}+ and {w}∗, respectively. If u∈X ∗, then |u| denotes the length of u,
that is, the number of letters in u. Moreover, if a∈X , then the number of occurrences
of the letter a in the word u is denoted by |u|a. Let L⊆X ∗. By alph(L) we denote
the alphabet of L, i.e. a∈ alph(L) if and only if a occurs in at least one word in L.
Let X be an alphabet and u; v be two words in X ∗. The shu�e product of u and v

is denoted by u � v and is de�ned by

u � v= {u1v1u2v2 : : : ukvk | u = u1u2 : : : uk ; v = v1v2 : : : vk ; k¿1; ui; vi ∈X ∗; 16i6k}:
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Obviously, u � v= v � u and (u � v) �w= u � (v �w) hold for all u; v; w∈X ∗.
Now, let A; B⊆X ∗. By the shu�e product of A and B we mean
A �B= ⋃

u∈A; v∈B
(u � v):

It is easy to see that A �B=B �A and that A � (B �C)= (A �B) �C.
For further de�nitions and notations in formal language theory and theory of codes

the reader is referred to [6, 19, 20], respectively.

2. Shu�e closure

Let L⊆X ∗. To the language L we associate a set called the shu�e-residual of L,
which consists of all words x with the following property: if u∈L, the result of the
shu�e u � x is included in L. Formally, the shu�e-residual of L is denoted by shRes(L)
and is de�ned by

shRes(L)= {x∈X ∗ | ∀u∈L; u � x⊆L}:

Example. Let X = {a; b}. Then,
– shRes(X ∗)=X ∗;
– shRes(Lab)= Lab, where Lab= {x∈X ∗||x|a= |x|b};
– if L= {anbn | n¿0} then shRes(L)= {1};
– if L1 = (a2)∗, L2 = aL1 then shRes(L1) =L1 and shRes(L2)=L1;
– if L= b∗ab∗ then shRes(L)= b∗= shRes2(L);
– if L= aX ∗b then shRes(L)=L.

The following results give some basic properties of the shu�e residual of a language.

Proposition 2.1. shRes(M) � shRes(N )⊆ shRes(M �N ) and shRes(M)∩ shRes(N )⊆
shRes(M ∪N ):

Proof. Let u∈ shRes(M) � shRes(N ). This means that there exist m∈ shRes(M) and
n∈ shRes(N ) such that u∈m � n. We have that

(M �N ) � (m � n)= (M �m) � (N � n)⊆M �N:
Note that the equality does not always hold. For example, let X = {a; b}, M = ab∗ and
N = ba∗. Then, shRes(M)= {1}= shRes(N ). On the other hand, M �N = {u∈X ∗ | |u|a
¿1; |u|b¿1}, therefore shRes(M �N )=X ∗.
For the second inclusion, let u∈ shRes(M)∩ shRes(N ). The fact that u∈ shRes(M)

implies that M � u⊆M . The fact that u∈ shRes(N ) implies that N � u⊆N . Conse-
quently, we have (M ∪N ) � u⊆M ∪N . Note that the equality does not always hold.
For example, if M =(X 2)∗ and N =X (X 2)∗ then shRes(M)= shRes(N )=M , but
shRes(M ∪N )=X ∗.
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A language L is commutative if for any w∈L, L contains all the words obtained
from w by arbitrarily permuting its letters. For a word u= a1a2 : : : ak ∈X ∗, k¿0 we
de�ne

com(u)= {as(1)as(2) : : : as(k) | s a permutation of {1; : : : ; k}}:
that is, com(u) contains all the words obtained by arbitrarily permuting the letters of
u. If L⊆X ∗ then

com(L)=
⋃

u∈L
com(u):

Proposition 2.2. shRes(L) is a submonoid of X ∗ that is moreover closed under shu�e.
If L is a commutative language; then shRes(L) is also a commutative language.

Proof. Let x; y∈ shRes(L) and u∈L. Then u � x⊆L and consequently (u � x) �y⊆L.
As shu�e is associative, we have that u � (x �y)⊆L, that is, x �y⊆ shRes(L). This
implies the closure of shRes(L) under shu�e. In particular, xy∈ x �y belongs to
shRes(L). Since 1∈ shRes(L), shRes(L) is not empty. For the second claim, let x∈
shRes(L). We have that u � x⊆L. As L is commutative, com(u � x)⊆L. In particu-
lar, u � com(x)⊆ com(u � x)⊆L, which implies com(x)⊆ shRes(L), i.e., shRes(L) is
commutative.

In the following, we give some properties and characterize shRes(L) for a given
language L. We begin by de�ning the iterated shu�e operation as

L1 � ∗L2 =
∞⋃

n=0
(L1 �n L2);

where L1 �0 L2 =L1 and L1 �n+1 L2 = (L1 � nL2) �L2.

Lemma 2.1. Let L⊆X ∗ and let u; v∈ shRes(L). Then (v �∗ u)⊆ shRes(L).

Proof. Let w∈ (v �∗ u). There exists k¿0 such that w∈ (v �k u).
We will show, by induction on k, that w∈ shRes(L). If k =0, then w= v∈ shRes(L).

Assume the assertion holds true for k and take w∈ (v �k+1 u) and z ∈L. Then, w∈ � � u
where �∈ (v �k u). According to the induction hypothesis, v � ku⊆ shRes(L) therefore
�∈ shRes(L). As �; u∈ shRes(L) and by Proposition 2.2, shRes(L) is closed under the
shu�e operation, � � u⊆ shRes(L). This implies w∈ shRes(L).

Proposition 2.3. Let L⊆X ∗. Then shRes2(L)= shRes(shRes(L))= shRes(L).

Proof. Assume u∈ shRes(shRes(L)). As 1∈ shRes(L), we have u=1u∈ shRes(L), i.e.
shRes(shRes(L))⊆ shRes(L). Assume now that u∈ shRes(L). Let v∈ shRes(L). Obvi-
ously, v � u∈ (v �∗u). By Lemma 2.1, v �∗u⊆ shRes(L), hence u∈ shRes(shRes(L)),
i.e. shRes(L)⊆ shRes(shRes(L)).
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In order to characterize the shu�e residual of a language L we need to introduce an
operation which is, in a sense, “inverse” to shu�e: the scattered deletion. Let L1; L2 be
two languages over X . The scattered deletion of L2 from L1 is de�ned as (see [18]):

L1 7→ L2 = {w∈X ∗ | u1v1u2v2 : : : ukvkuk+1 ∈L1;
v1v2 : : : vk ∈ L2; u1u2 : : : uk+1 =w; k¿1; ui; vi ∈X ∗}:

The scattered deletion of a word v from u sparsely erases the letters of v from u, in
the same order in which they occur in v, but irrespective of their position. A language
L is called scattered deletion closed, or shortly, sd-closed, i� u∈L and v∈L imply
u 7→ v∈L.
We are now ready to construct the set shRes(L) for a given language L.

Proposition 2.4. If L is a language in X ∗ then shRes(L)= (Lc 7→ L)c. Here Kc is
meant the language X ∗ − K for K ⊆X ∗.

Proof. Take x∈ shRes(L). Assume, for the sake of contradiction, that x 6∈ (Lc 7→ L)c.
Then, x∈ (Lc 7→ L), that is, there exist v∈Lc, u∈L such that x∈ v 7→ u. Note that
x∈ v 7→ u i� v∈ x � u. We arrived at a contradiction, as x∈ shRes(L) and u∈L but the
word v in x � u belongs to Lc.
Consider now a word x∈ (Lc 7→ L)c. If x 6∈ shRes(L), there exists u∈L, such that

(u � x)∩Lc 6= ∅. Let v∈ (u � x)∩Lc. This implies x∈ (v 7→ u)⊆ (Lc 7→ L) – a contra-
diction with the initial assumptions about x.

Corollary 2.1. If a language L is regular; then shRes(L) is regular and can be e�ec-
tively constructed.

Proof. It follows as the family of regular languages is closed under scattered deletion
(see [18]) and complementation.

A language L such that L⊆ shRes(L) is called shu�e-closed or, shortly, sh-closed.
A language L is sh-closed i� u∈L and v∈L imply u � v⊆L. As a consequence, note
that every sh-closed language is a submonoid of X ∗. Note that a language L is sh-
closed i� L �L⊆L.
In general, submonoids of X ∗ are not sh-closed. For example, let X = {a; b; c} and

let L=(a(bc)∗)∗. Then L is a submonoid that is not sh-closed, because a; abc∈L, but
abac 6∈L.

Proposition 2.5. shRes(L)=L if and only if L is sh-closed and 1∈L.

Proof. (⇒) Done.
(⇐) If L is sh-closed then L⊆ shRes(L). For the other inclusion note that for every

u∈ shRes(L), the fact that 1∈L implies 1u∈L, that further implies shRes(L)⊆L.
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If nonempty, the intersection of sh-closed languages is also an sh-closed language.
Let L be a nonempty language and let IL be the family of all the sh-closed languages
containing L. This family is nonempty because X ∗ ∈ IL. The intersection

sfc(L)=
⋂

Li∈IL
Li

of the languages of the family IL is clearly an sh-closed language containing L and
it is called the shu�e-closure of L, or shortly, sh-closure of L. The sh-closure of a
language L is the smallest sh-closed language containing L.

Proposition 2.6. The shu�e closure of a language L is sfc(L)=L � ∗L.

Proof. “sfc(L)⊆L � ∗L”. Obvious, as L � ∗L is sh-closed and L is included in L � ∗L.
“L � ∗L⊆ sfc(L)”. We show by induction on k that L � kL⊆ sfc(L). For k =0 the

assertion holds, as L⊆ sfc(L).
Assume that L � kL⊆ sfc(L) and consider a word u∈L � k+1L=(L � kL) �L. Then

u∈w � v where w∈L � kL and v∈L. As both L � kL and L are included in sfc(L) and
sfc(L) is sh-closed, we deduce that w � v⊆ sfc(L), i.e., u∈ sfc(L). The induction step,
and therefore the requested equality are proved.

Remark that, if L is a regular (context-free) language, then sfc(L) is not in general
a regular (context-free) language. Indeed, this follows because the families of regu-
lar and context-free languages are not closed under iterated shu�e. For example, let
L= {a; b; c}. The iterated shu�e of L into L is Labc= {w∈{a; b; c}∗ | |w|a= |w|b= |w|c}
which is not a context-free language.
Note that if L is sh-closed then L �∗ L=L. Indeed, as L is sh-closed, we have that

L= sfc(L). On the other hand, according to Proposition 2.6, sfc(L)=L � ∗L.
On X ∗ we can de�ne an order relation, called the embedding order and denoted by

6h. For two words u; v∈X ∗, we say that u6h v i� there exists a w∈X ∗ such that
v∈ u �w. A language H ⊆X+ is called a hypercode i� for all u; v∈H; u6h v implies
u= v. A hyperdode is always �nite.
The following result, proved in [12], relates the notions of shu�e and scattered

deletion with the notion of hypercode.

Proposition 2.7. Let M be a submonoid of X ∗ and M 6= ∅; M 6= {1}. Then M is sh-
closed and sd-closed if and only if M is generated by a hypercode (generated refers
to the shu�e operation).

We conclude this section by considering the particular case where the language
whose sh-closure we are studying is a singleton. The shu�e closure of a singleton
word u, which generalizes the notion of monogenic closure of a word, [21], is denoted
by [u] and called the monogenic shu�e closure of u.

Proposition 2.8. If u; v∈X ∗ then v∈ [u] if and only if [v]⊆ [u].



M. Ito et al. / Theoretical Computer Science 245 (2000) 115–133 121

Proof. The implication ⇐ is immediate as v∈ [v]. For the reverse implication let
v∈ [u]. Then v∈ u �n u for some n. This implies v �m v⊆ u �nm u⊆ [u], which shows
that [v]⊆ [u].

Proposition 2.9. Let u∈X+. Then the following are equivalent.
(a) [u] is regular;
(b) u∈ a+ for some a∈X;
(c) [u] is closed under scattered deletion.

Proof. (b)⇒ (a) or (c): obvious.
(a)⇒ (b) Assume [u] regular. Suppose that u= aibx (i¿1); a; b∈X; a 6= b; x∈X ∗.

For all v∈ [u] we have that | v|b= | v|a=constant = �= | u|b= | u|a. For all n¿1 ain(bx)n
∈ [u]. As [u] is regular, according to the Pumping Lemma, if we take a large enough n,
there exists a p¿1 with the property that w= ain+p(bx)n ∈ [u]. This implies |w|b= |w|a
¡ � – a contradiction.
(c)⇒ (b) Suppose u =∈ a+ for any a∈X . Then u= aibx for some a; b∈X; a 6= b; i¿1,

and x∈X ∗. We have u2 = aibxaibx= ai(bxai)bx. As [u] is scattered deletion closed,
bxai ∈ [u]. As | aibx | = | bxai | and both words are in [u], this implies aibx= bxai,
which is impossible. Therefore, u∈ a+ for some a∈X .

3. Maximal shu�e residuals

This section will address conditions for the existence of maximal languages whose
shu�e residual equals a given language, as well as a generalization of the notion of
shu�e residual. Let L⊆X ∗ be an sh-closed language with 1∈L. ByMX (L), we denote
the set {M ⊆X ∗ | shRes(M)=L and M is maximal in the sense of inclusion relation}.
Recall that a language L⊆X ∗ is sd-closed i� L 7→ L⊆L. A language that is

sh-closed and sd-closed has been called ssh-closed in [12]. For example, X ∗ and Lab
are sd-closed languages that are also sh-closed. Furthermore, they are both submonoids
of X ∗.

De�nition 3.1. An sh-closed language L⊆X ∗ is said to be an RSS-type language if
it contains a regular ssh-closed language L0 with alph(L)= alph(L0).

Proposition 3.1. An sh-closed language L⊆X ∗ is an RSS-type language if and only
if; for any a∈ alph(L); a+ ∩L 6=�.

Proof. (⇒) Let a∈ alph(L). Then a∈ alph(L0). Since L0 is an ssh-closed language,
by [12], a+ ∩L0 6=� and hence a+ ∩L 6=�.
(⇐) Let alph(L)= {a1; a2; : : : ; an} and let pi be a positive integer such that apii ∈L

for any i; 16i6n. Moreover, let L0 = (a
p1
1 )

∗ � (ap22 )∗ � · · · � (apnn )∗. Then L0⊆L and
L0 is a regular ssh-closed language.
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In what follows, L⊆X ∗ is assumed to be an RSS-type language which contains a
regular ssh-closed language L0 with alph(L)= alph(L0).

Lemma 3.1. Let M ⊆X ∗ with shRes(M)=L. Then M can be represented as M =
⋃
i∈I (ai � L0) where ai ∈X ∗; i∈ I .

Proof. Obvious from the fact L0 �M =M .

Lemma 3.2. Let M ⊆X ∗ with shRes(M)=L. If alph(L)=X; then there exists a pos-
itive integer p satisfying the following condition: For any u∈X ∗; there exists �∈X ∗
such that | � |6p and u∈ � � L0.

Proof. Let X = {a1; a2; : : : ; an}. Since L0 is ssh-closed, for any i; 16i6n, there exists
a positive integer pi such that (a

pi
i )

∗ ⊆L0. Now let u∈X ∗. Then u∈ u′ � (ap11 )∗ �
(ap22 )

∗ � · · · � (apnn )∗ where 06 | u′|ai¡pi for any i; 16i6n. Let p=
∑n

i=1 (pi − 1).
Then u∈ u′ � L0 and | u′ |6p.

De�nition 3.2. By C�, we denote the set � � L0.

Lemma 3.3. Let u; v∈C� and let u6h v. Then v � L0⊆L0.

Proof. First, (v 7→ u) 6=�. The assumption u; v∈C� implies that (v 7→ u)⊆ com(L0 7→
L0)= com(L0)=L0. Hence v∈ u � L0. Therefore, v � L0⊆ (u � L0) � L0 = u � L0.

Proposition 3.2. Assume alph(L)=X . Let M ⊆X ∗ with shRes(M)=L. Then M is
regular.

Proof. Let M =
⋃
i∈I (�i � L0). Then, by Lemma 3.2, there exists a positive integer q

and �j ∈X ∗; 16j6q such that {�i | i∈ I}=
⋃
j∈{1;2;::: q}(�j�L0). Let Dj=C�j ∩{�i | i∈I}

for any j; 16j6q. Note that each Dj contains a maximal hypercode Hj in Dj. Let
H↓
j = {u∈Dj |∃v∈Hj; u6hv} for any j; 16j6q and let E=

⋃
j∈{1;:::; q} H

↓
j . Remark that

E⊆{�i | i∈ I} and E is �nite. Let �∈{�i | i∈ I}. Then there exists j; 16j6q such
that �∈Dj. By the de�nition of H↓

j , �∈Hj or �k6h � for some �k ∈H↓
j . In the former

case, � � L0⊆E � L0. In the latter case, �∈ �k � L0 and hence � � L0⊆ �k � L0⊆E � L0.
Therefore, E �L0⊆

⋃
i∈I (�i �L0)⊆E �L0 and M =E �L0. Since E and L0 are regular,

M is regular.

Corollary 3.1. An RSS-type language is regular.

Proof. Since L= shRes(M) and M is regular, L is regular.

Remark that, if alph(L)⊂X , then the statement in Proposition 3.2 does not hold
true. For instance, let M =L∪ (⋃n¿1 (b

n! � L)) where L is an RSS-type language and
b∈X \alph(L). Then shRes(M)=L but M is not regular.
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Proposition 3.3. Assume alph(L)=X . Let M ⊆X ∗ with shRes(M)=L. Then there
exists N ⊇M such that N ∈MX (L).

Proof. Let M =M0⊂M1⊂M2⊂ · · · be an ascending chain of languages such that
shRes(Mi)=L for any i; i¿0. Moreover, let Mi=

⋃
j∈Ii(�ij �L0) for any i; i¿0. From

the same reason as in the proof of Proposition 3.2, it follows that {�ij | i¿0; j∈ Ii}⊆⋃
j∈{1;2;:::; q} C�j . Let Dk =C�k ∩{�ij | i¿0; j∈ Ii} for any k; 16k6q. Let Hk be a max-

imal hypercode in Dk , let H
↓
k = {u∈Dk | ∃v∈Hk; u6h v} for any k; 16k6q and let

E=
⋃
k∈{1;2;:::; q} H

↓
k . Then E is �nite. Suppose M =M0⊂M1⊂M2⊂ · · · is an in�-

nite ascending chain. Since E is �nite, there exists a possitive integer r such that
E �L0⊆Mr . Let �(r+1)t ∈Mr+1\Mr . In the same way as in the proof of Proposition 3.2,
�(r+1)t � L0⊆E � L0⊆Mr , a contradiction. Hence M =M0⊂M1⊂M2⊂ · · · is always a
�nite ascending chain. Consequently, N =Mr ∈MX (L).

The situation is completely di�erent for the case alph(L)⊂X .
Let alph(L)=Y ⊂X and let Z =X \Y: Now let Z∗= {z0; z1; z2; : : :} where z0 = 1 and

| zi |6 | zi+1 | for any i; i¿0. Now suppose there exists M ∈MX (L) and M =
⋃
i¿0 (zi�

Mi) where Mi⊆Y∗ for any i; i¿0. Note that shRes(Mi)⊇L for any i; i¿0.

Lemma 3.4. Mi 6=� for any i; i¿0.

Proof. Suppose M0 =�. Consider N =M ∪L. It is obvious that N ⊃M and shRes(N )
⊇L. Since M ∈MX (L); shRes(N )⊃L. Let x∈ shRes(N )\L. Then there exists mi ∈ zi�
Mi; i¿1 such that (mi � x)∩L 6=�. However, this is impossible because, for any
u∈L; | u|Z =0 but, for any v∈mi � x; | v|Z¿ |mi|Z¿1. Hence M0 6=�. Now suppose
Mi=� for some i; i¿1. Consider N =M ∪ (zi � L). Obviously, N ⊃M and shRes(N )
⊇L. By the maximality of M; shRes(N )⊃L. Hence there exists x∈ shRes(N )\L such
that (x�M)∩ (zi �L) 6=�. This implies that |x|Z¿0. Now consider x|zi|+1∈shRes(N )\L.
Then there exists m∈M such that (x|zi|+1 �m)∩ (zi �L) 6=�. This yields a contradiction
because, for any u∈ zi � L; |u|Z = |zi| but, for any v∈ x|zi|+1 �m; |v|Z¿|zi| + 1. Hence
Mi 6=� for any i; i¿0.

Lemma 3.5. Let N= {i | i¿0; Mi 6=Y∗}. Then N is in�nite.

Proof. Suppose there exists a positive integer n0 such that, for any n¿n0; Mn=Y∗.
Consider z2n ∈Z+. Obviously, z2n �M ⊆M . Hence z2n ∈ shRes(M), a contradiction. This
completes the proof of the lemma.

Now let Ki= shRes(Mi) for any i; i¿0. Recall that Ki⊇L for any i; i¿0.

Lemma 3.6. L=
⋃
i¿0 Ki.

Proof. Obviously, L⊆ ⋃
i¿0 Ki. Let x∈

⋃
i¿0 Ki. Since x∈K0; x �M0⊆M0. Therefore,

|x|Z =0 and (zi �Mi) � x⊆ (zi �Mi) for any i; i¿1. This implies that x �M ⊆M , i.e.
x∈L. This completes the proof of the lemma.
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Lemma 3.7. Let N =(
⋃
i¿0; i 6= k (zi �Mi))∪ (zk � Y∗). Then shRes(N )=

⋂
i¿0; i 6= k Ki.

Proof. That
⋂
i¿0; i 6= k Ki⊆shRes(N ) is obvious. Assume x∈ shRes(N ). If |x|Z ¿

0, then x|zk |+1 ∈ shRes(N ). Since x|zk |+1 � N ⊆ ⋃
i¿k+1 (zi � Mi) and zk � Mk ⊆ zk �

Y∗; x|zk |+1 �M ⊆M , i.e. x|zk |+1 ∈ shRes(M)=L, a contradiction. Hence |x|Z =0. Since
|x|Z =0; x �Mi⊆Mi for any i; k 6= i¿0, i.e. x∈

⋂
i¿0; i 6=k Ki. This completes the proof

of the lemma.

Let A= {w∈X ∗ | ∃i¿0; w =∈Ki;∀j; j 6= i; w∈Kj}. Note that A= {w∈X ∗ | ∃i¿0; w
=∈Ki;∀j; j 6= i; w � L0⊆Kj}. As the proof of Proposition 3.2, there exists a �nite set
B with B⊆A such that, for any w∈A there exists w′ ∈B with w∈w′ � L0. Now
let w =∈Ki and let w′ =∈Kj. Suppose i 6= j. Then w′ ∈Ki and hence w∈w′ � L0⊆Ki, a
contradiction. Therefore, i= j. Let B= {w1; w2; : : : ; wr}. Moreover, for any i; 16i6r,
we choose some integer f(i) such that wi =∈Kf(i). Then the following is now obvious.

Lemma 3.8. Let w∈A. Then w =∈ ⋂
16i6r Kf(i).

Proposition 3.4. Let alph(L)=Y ⊂X . Then MX (L)=�.

Proof. By Lemma 3.5, there exists a positive integer t such that Mt 6=Y∗ and t =∈{f(1);
f(2); : : : ; f(r)}. Let u =∈L. If u∈A, then u =∈ ⋂

16i6r Kf(i) and hence u =∈
⋂
i¿0; i 6= t Ki.

If u =∈A, then there exist at least two distinct integers i and j such that u =∈Ki ∪Kj.
Therefore, u =∈ ⋂

i¿0; i 6= t Ki. Now let N =(
⋃
Hi¿0; i 6= t (zi �Mi))∪ (zt � Y∗). Obviously,

N ⊃M . By Lemma 3.7, shRes(N )= ⋂
i¿0; i 6= t Ki=L. This contradicts the maximality

of M and hence MX (L)=�.

We consider now similar questions for a generalization of the notion of shu�e
residual. The shu�e residual of a language consists of the words x whose shu�e L � x
is completely included in L. We can relax this condition by only requiring that at
least one word from L � x belongs to L. The notion obtained in this way generalizes
the notion of shu�e residual. More precisely, the generalized shu�e residual of a
language L, denoted by g-shRes(L) is de�ned as follows.

De�nition 3.3. Let M ⊆X ∗. Then g-shRes(M)= {x∈X ∗ | ∃y∈M; (x �y)∩M 6= ∅}.

The following results give some properties of the generalized shu�e residual of a
language.

Proposition 3.5. If M is a semigroup; then g-shRes(M) is a monoid.

Proof. (i) 1∈M : obvious.
(ii) x; y∈ g-shRes(M) implies that there exist z1; z2 ∈M such that (x � z1)∩M 6= ∅

and (y � z2)∩M 6= ∅. This implies that (xy � z1z2)∩M 6= ∅, that is, xy∈ g-shRes(M).
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Proposition 3.6. If M is sh-closed, then g-shRes(M) is sh-closed.

Proof. If x; y∈ g-shRes(M) this means that there exist z1; z2 ∈M such that (x � z1)∩M
6= ∅ and (y � z2)∩M 6= ∅.
Let z be a word in x �y. As z1 � z2⊆M we have that

z � (z1 � z2)⊆ (x �y) � (z1 � z2)= (x � z1) � (y � z2);
which implies that [z � (z1 � z2)]∩M 6= ∅.

Proposition 3.7. If M ⊆X ∗ is regular; then g-shRes(M) is regular.

Proof. Let M be a regular language accepted by the �nite automaton A=(S; X; �; s0; F),
where S is the set of states, X is the alphabet, � is the transition function, s0 the initial
state, and F the set of �nal states of A. Denote by �X = { �a | a∈X } and X̃ =X ∪ �X .
Consider the function �1 : S× X̃ → S de�ned as �1(s; a)= �(s; a) if a∈X and �1(s; �a)

= s if �a∈ �X .
Consider another function �2 : S × �X → S de�ned by �2(s; a)= �(s; a) if a∈X and

�2(s; �a)= �(s; a) if �a∈ �X .
De�ne now the automaton

Ã=(S; X̃ ; �̃; (s0; s0); {(s; t) | s∈F; t ∈F});
where the transition function �̃ : (S × S)× X̃ → S × S is �̃((s; t); b)= (�1(s; b); �2(t; b))
for b∈ X̃ .
It is not di�cult to see that

L(Ã)= {z ∈ X̃ ∗ |∃xi∈{1}∪X;∃yi ∈{1}∪X; z= x1 �y1x2 �y2 : : : xn �yn; x1x2 : : : xn ∈M;
x1y1x2y2 : : : xnyn ∈M; where �1= 1}:

Let � be the morphism of X̃ ∗ into X ∗ de�ned by �(a)= 1 if a∈X and �( �a)= a if
�a∈ �X .
Then it is easy to see that g-shRes(M)= �(L(Ã)), hence g-shRes(M) is regular.

Denote now by G= {L⊆X ∗ | ∃M ⊆X ∗ such that g-shRes(M)=L} .

Remark 3.1. The following statement is not always true: “For any L⊆G there exists
a maximal M ⊆X ∗ such that g-shRes(M)=L.

Proof. {1}∈G. Suppose that there exists a maximal M ⊆X ∗ such that g-shRes(M)=
{1}. Let � =∈M and let M̃ =M ∪{�}. It is obvious that {1}∈ g-shRes(M̃). Suppose
that 1 6= x =∈ g-shRes(M̃). Since g-shRes(M̃) is a monoid, xn ∈ g-shRes(M̃) for any
n; n¿1. Let n¿1 such that n|x|¿|�|. Note that (M ∪{�}) � xn⊆M ∪ �. However, since
xn =∈ g-shRes(M), there exists m∈M such that xn �m 6⊆M . Hence �∈ xn �m, but this
contradicts the assumption n|x|¿|�|. Therefore g-shRes(M̃)= {1}. This means that M
is not maximal.
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4. Scattered deletion closure

This section parallels Section 2 by considering a notion analogous to the shu�e
residual of a language, but this time in relation to the scattered deletion operation.
Let L⊆X ∗ and de�ne the set of sparse subwords of L by:

sps(L)= {u∈X ∗ | u= a1 : : : ak ; and ∃v1a1v2a2 : : : vkakvk+1 ∈L; ai; vi ∈X ∗}:

To the language L one can associate the set consisting of all words x with the following
property: x is sparse subword of at least one word of L, and the scattered deletion of x
from any word of L containing x as sparse subword yields words belonging to L. The
set de�ned in this way, denoted by sdRes(L) and called the scattered deletion residual
of L, is formally de�ned by

sdRes(L)= {x∈ sps(L) | ∀u∈L; u 7→ x⊆L}:

The condition that x∈ sps(L) has been added because otherwise sdRes(L) would
contain irrelevant elements: words which are not sparse subwords of any word of L
and thus yield ∅ as a result of the scattered deletion from L.

Example. Let X = {a; b}. Then,
– sdRes(X ∗)=X ∗;
– sdRes(Lab)=Lab;
– if L= {anbn | n¿0} then sdRes(L)=L;
– if L= b∗ab∗ then sdRes(L)= b∗.

The following proposition gives some basic properties of the scattered deletion resid-
ual of a language.

Proposition 4.1. Let L⊆X ∗.
(i) If x; y∈ sdRes(L) and xy∈ sps(L); then xy∈ sdRes(L).
(ii) If sps(L) is a submonoid of X ∗; then sdRes(L) is a submonoid of X ∗.
(iii) If L is a commutative language; then sdRes(L) is also commutative.

Proof. (i) Let x; y∈ sdRes(L) with xy∈ sps(L). If u∈L,

u= u1x1u2x2 : : : ukxkuk+1y1uk+2y2 : : : un+kynun+k+1

then, as x∈ sdRes(L); u1 : : : uk+1y1 : : : ynun+k+1 ∈L and, as y∈ sdRes(L) we can con-
clude that u1 : : : uk : : : un+k+1 ∈L. As the initial decomposition of u was arbitrary, we
deduce that u 7→ xy⊆L, which implies xy∈ sdRes(L).
(ii) Immediate from (i).
(iii) Let x= x1x2 : : : xk ∈ sdRes(L); xi ∈X ∗ for 16i6k. As x∈ sps(L) and L is com-

mutative, com(x)⊆ sps(L). Let y=y1y2 : : : yk ; yi ∈X , be a word in com(x) and let
u= u1y1 : : : ukykuk+1 ∈L; ui ∈X ∗; yi ∈X . As L is commutative, the word
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u1x1 : : : ukxkuk+1 is in L and, as x∈ sdRes(L), we have that u1 : : : ukuk+1 ∈L. This im-
plies u 7→ y⊆L, which means y∈ sdRes(L).

In the following, we show how, for a given language L, the set sdRes(L) can be
constructed. The construction is similar to the one for shRes(L).

Proposition 4.2. If L is a language in X ∗ then sdRes(L)= (L 7→ Lc)c ∩ sps(L).

Proof. Let x∈ sdRes(L). From the de�nition of sdRes(L) it follows that x∈ sps(L).
Assume that x =∈ (L 7→ Lc)c. This means there exists w∈L; v∈Lc such that x∈ (w 7→ v).
This further implies v∈ (w 7→ x). We arrived at a contradiction as x∈ sdRes(L) but
there exists a word w∈L with (w 7→ x)∩Lc = v 6= ∅.
For the other inclusion, let x∈ (L 7→ Lc)c ∩ sps(L). As x∈ sps(L), if x =∈ sdRes(L)

then there exists w∈L such that v∈ (w 7→ x)∩Lc 6= ∅. This implies x∈ (w 7→ v)⊆ (L 7→
Lc) – a contradiction with the initial assumption about x.

The following, result connects the notions of shu�e and scattered deletion.

Proposition 4.3. Let L⊆X ∗ be an sh-closed language. Then L is sd-closed if and
only if L=(L 7→L).

Proof. If L is sd-closed, L 7→ L⊆L. Now let u∈L. Since L is sh-closed, uu∈L.
Therefore u∈ (L 7→ L), i.e. L⊆ (L 7→L). We can conclude that L=(L 7→L). The other
implication is obvious.

If L is a nonempty language and if DL is the family of all the sd-closed languages
Li containing L, then the intersection

⋂

Li∈DL
Li

of all the sd-closed languages containing L is an sd-closed language called the scattered
deletion closure of L, or shortly, sd-closure of L. The sd-closure of L is the smallest
sd-closed language containing L.
We will now de�ne a sequences of languages whose union is the sd-closure of a

given language L. Let

sdc0(L)=L;

sdc1(L)= sdc0(L) 7→ (sdc0(L)∪{1});
sdc2(L)= sdc1(L) 7→ (sdc1(L)∪{1});
· · ·
sdck+1(L)= sdck(L) 7→ (sdck(L)∪{1}):
· · ·
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Clearly sdck(L)⊆ sdck+1(L). Let
sdc(L)=

⋃

k¿0
sdck(L):

Proposition 4.4. sdc(L) is the sd-closure of the language L.

Proof. Clearly L⊆ sdc(L). Let now v∈ sdc(L) and u∈ sdc(L). Then v∈ sdci(L) and
u∈ sdcj(L) for some integers i; j¿0. If k = max{i; j}, then v∈ sdck(L) and u∈ sdck
(L). This implies (u 7→ v)⊆ sdck+1(L)⊆ sdc(L). Therefore sdc(L) is an sd-closed lan-
guage containing L.
Let T be an sd-closed language such that L= sdc0(L)⊆T . Since T is sd-closed, if

sdck(L)⊆T then sdck+1(L)⊆T . By an induction argument, it follows that sdc(L)⊆T .

Since, by [18], the family of regular languages is closed under scattered deletion,
it follows that if L is regular, then the languages sdck(L); k¿0, are also regular.
However, it is an open question whether sdc(L) is regular for any regular language
L⊆X ∗.
Recall that, for a language L, the principal congruence PL is de�ned by

u ≡ v(PL) i� ∀x; y∈X ∗ we have xuy∈L⇔ xvy∈L:
When the principal congruence of L has a �nite index (�nite number of classes) the
language L is regular.
If L is commutative, we have the following result.

Proposition 4.5. Let L⊆X ∗ be a regular language. If L is commutative; then its
scattered deletion closure sdc(L) is commutative and regular.

Proof. Let us prove �rst that sdc(L) is commutative. To this end, it is su�cient to
show that sdck+1(L) is commutative if sdck(L) is commutative. Let xuvy∈ sdck+1(L). If
xuvy∈ sdck(L), then we are done. Otherwise, by the de�nition of sdck+1(L), there exist
w; z ∈ sdck(L) such that w∈ (xuvy � z). Since sdck(L) is commutative, xuvyz∈ sdck(L)
and xvuyz ∈ sdck(L). From the fact that z; xvuyz ∈ sdck(L) and the de�nition of
sdck+1(L), it follows that xvuy∈ sdck+1(L), i.e. sdck+1(L) is commutative.
We will show next that sdc(L) is regular. To this aim, we show that if u ≡ v(Psdck (L))

then u ≡ v(Psdck+1(L)). Let u ≡ v(Psdck (L)) and let xuy∈ sdck+1(L). By the de�nition of
sdck+1(L), there exists w; z ∈ sdck(L) such that w∈ (xuy � z). Since sdck(L) is com-
mutative, xuyz ∈ sdck(L). Hence xvyz ∈ sdck(L). From the fact that z ∈ sdck(L) and
by the de�nition of sdck+1(L), it follows that xvy∈ sdck+1(L). In the same way,
xvy∈ sdck+1(L) implies xuy∈ sdck+1(L). Consequently, u ≡ v(Psdck+1(L)) holds. This
means that the number of congruence classes of Psdck+1(L) is smaller or equal to that of
Psdck (L). Remark that

sdc0(L)⊆ sdc1(L)⊆ · · · ⊆ sdcn(L)⊆ sdcn+1(L) · · · :
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It can be shown, [10], that sdct(L)= sdct+1(L) for some t; t¿1. Thus, sdc(L)= sdct(L)
which implies that sdc(L) is regular.

5. Combining the operations

Besides examining the notion of a shu�e-base of a language, this section studies
relations and interdependencies between shu�e, scattered deletion and various other
insertion and deletion operations.
If L is a shu�e closed language then its shu�e base is de�ned as

J (L)= {u∈L | u 6=1; u =∈ (L\{1}) � (L\{1})}=L\[(L\{1}) � +(L\{1})];
i.e. J (L) consists of the words of L that are not the result of shu�e of any nonempty
words of L. Then J (L) is uniquely determined and L\{1}= J (L) � ∗J (L). Properties
of the shu�e base of a language have been investigated in [12].
The following result shows that if L is regular, its shu�e base is also regular. The

proof is based on the fact that one can construct a generalized sequential machine
(shortly, gsm; see [19] for a de�nition) g such that g(L) is the set of words in L that
can be obtained as a result of shu�e.

Proposition 5.1. If L is a regular shu�e closed language then its shu�e base J (L)
is a regular language.

Proof. Let L be a regular sh-closed language. We can assume, without loss of general-
ity, that L is 1-free. Let A=(X; S; s0; F; P) be a �nite deterministic automaton accepting
L, where X is the alphabet, S is the set of states, s0 is the initial state, F is the set of
�nal states, and the rules of P are of the form sia→ sj; si; sj ∈ S; a∈X .
We will show that there exists a generalized sequential machine g, such that g(L)=

L\J (L). As the family of regular languages is closed under gsm mappings and set
di�erence, it will follow that J (L) is regular.
Note �rst that, as L is shu�e closed, L\J (L)= {u∈L | u∈L �L}:
Consider now the gsm g=(X; X; S × S; (s0; s0); F × F; P′) where

P′= {(si; sj)a→ a(si; s′j)|sja→ s′j ∈P}
∪ {(si; sj)a→ a(s′i ; sj)|sia→ s′i ∈P}

The idea of the construction is the following. We have constructed two copies of
the set of states. Given a word u1v1u2v2 : : : ukvk ∈L as an input, the gsm g works as
follows. The �rst component of a state makes sure that the word u1u2 : : : uk belongs to
L while the second component makes sure that v1v2 : : : vk is in L. While scanning the
letters of the input, the derivation a�ects either the �rst component or the second, but
not both. That is, according to the choice made, the letter will either be considered to
belong to u1 : : : uk or to v1 : : : vk . A �nal state will be reached only if a �nal state is
reached in both components, i.e. if both u1 : : : uk ∈L and v1 : : : vk ∈L.
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From the above explanations it follows that g reaches a �nal state i� the input word
is of the form u1v1u2v2 : : : ukvk with u1 : : : uk ∈L and v1 : : : vk ∈L, that is, i� the input
is the result of the shu�e of two words in L. Consequently, g(L)= {u | u∈L �L}.

A language L⊆X ∗ is called e-convex, [20], i� u6h x6hv, and u; v∈L imply x∈L.
In particular, any hypercode is an e-convex language. A language L is called a �-ideal
of X ∗, [22], i� u1u2 ∈L; x∈X ∗ imply u1xu2 ∈L.

Proposition 5.2. L is shu�e closed and e-convex if and only if L is a �-ideal of
Y∗; Y ⊆X .

Proof. (⇒) Let Y = alph(L). Let u∈L and a∈Y . Then there exists v∈L with v= xay.
Hence u � v⊆L and in particular, xu1au2y∈L for any decomposition u= u1u2 of u.
Clearly,

u6h u1au26h xu1au2y; with u= u1u2:

Therefore, u1au2 ∈L for all decompositions u= u1u2 of u. If x∈Y∗; x= x1 : : : xk ; xi ∈X
then u1x1u2 ∈L, which implies u1x1x2u2 ∈L and so on. Finally we conclude that
u1xu2 ∈L, i.e., L is a �-ideal of Y∗.
(⇐) Let u; v∈L. As L is a �-ideal, by iteratedly inserting the letters of v into u we

obtain words belonging to L, i.e., u � v⊆L. Analogously, if u6h x6h v and u; v∈L,
then x can be obtained from u by inserting some letters, therefore x∈L.

In the remainder of this section we consider relations between various insertion and
deletion operations.

Example.
– The language L= {anbn| n¿0} is sd-closed but is not shu�e closed.
– The language L= aX ∗b, where X = {a; b} is shu�e closed but is not sd-closed.
– Any shu�e closed language that is 1-free is an example of a language that is shu�e
closed but not sd-closed.

The following results connect shu�e and scattered deletion with ordinary insertion
and deletion operations. Recall that a language L is insertion closed or shortly ins-
closed, i� for all u; x; v∈X ∗; x∈L and uv∈L imply uxv∈L (see [11]). Analogously,
a language L is called deletion closed, or shortly del-closed, i� for all u; x; v∈X ∗,
uxv∈L and x∈L imply uv∈L (see [11]).

Proposition 5.3. Any language L⊆X ∗ that is ins-closed and sd-closed is shu�e
closed.

Proof. It is enough to prove that the language L is commutative.
Let xuvy∈L. As L is ins-closed, the word x(xuvy)uvy belongs to L. L is sd-closed

and therefore xvyu∈L. The fact that L is ins-closed implies that xv(xuvy)yu∈L.
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By deleting xvyu and because L is sd-closed, we obtain xvuy∈L. This implies that
L is commutative and, together with the fact that L is ins-closed, it implies that L is
shu�e closed.

Proposition 5.4. An sh-closed language that is del-closed is not always an ssh-closed
language.

Proof. Let X = {a; b} and let f be the following mapping of X ∗ into the set of
integers:
(1) f(1)= 0
(2) f(a)= 1; f(b)= − 1
(3) f(a1a2 : : : an)=

∑n
i=1 f(ai)where ai ∈X; 16i6n:

Consider the language L= {u∈X ∗| u= vw ⇒ f(v)¿0 and f(u)= 0}.
Then it is not di�cult to verify that L is an sh-closed language which is del-closed.
Indeed, let u; v∈L; u= u1u2 : : : un and v= v1v2 : : : vn. For a pre�x of a word in the

shu�e, u1v1 : : : ukvk ; 16k6n we have that f(u1v1 : : : ukvk)=f(u1 : : : uk) + f(v1 : : : vk)
¿0. Moreover, f(u1v1 : : : unvn)=f(u1 : : : un) + f(v1 : : : vn)= 0. This implies that the
language L is sh-closed. Let now uvw∈L and v∈L. We have that

f(uw)=f(u) + 0 + f(w)=f(u) + f(v) + f(w)=f(uvw)= 0:

If u= u1u2 then f(u1)¿0 since u1u2vw∈L. On the other hand, if w=w1w2 then
f(uw1)=f(u) + 0 + f(w1)=f(u) + f(v) + f(w1)=f(uvw1)¿0

since uvw1w1 ∈L. This means L is del-closed.
Note that L⊆ aX ∗ ∪ {1}. Moreover, |u|b 6= 0 for any u∈L\{1}. Suppose L is ssh-

closed. Then, according to the proof of Proposition 5.3, L is commutative, hence L ∩
bX ∗ 6= ∅, a contradiction. Therefore, L is not ssh-closed.

A language L is dipolar deletion closed, [11], or shortly dipdel-closed i� for all
u; x; v∈X ∗; uxv∈L and uv∈L imply x∈L.

Proposition 5.5. A language L that is sh-closed and dipdel-closed is ssh-closed.

Proof. It is enough to show that the language L is commutative. Let xuvy∈L.
As L is sh-closed, the word xuxvuyvy is in L. As L is dipdel-closed, this implies
that xvuy∈L.

Lemma 5.1. Let X be an alphabet and let G be a �nite group. Moreover, let f be a
morphism of X ∗ into G. Then L= {u∈X ∗| f(u)= e} is ins-closed and dipdel-closed.

Proof. Let v∈L and uw∈L. Then f(uvw)=f(u)f(v)f(w)=f(u)f(w)=f(uw)= e,
i.e., uvw∈L, which means that L is ins-closed. Now, let uw; uvw∈L. Then e=f(uw)
=f(u)f(w) and f(w)=f(u)−1. Since e=f(uvw)=f(u)f(v)f(w)=f(u)f(v)



132 M. Ito et al. / Theoretical Computer Science 245 (2000) 115–133

f(u)−1, we have f(u)−1ef(u)=f(u)−1f(u)f(v)f(u)−1f(u)=f(v), which implies
f(v)= e, i.e., v∈L. This means L is dipdel-closed.

Denote by Sn the group of permutations of {1; : : : n}.

Proposition 5.6. Let |X |¿2. Then there exists an ins-closed and dipdel-closed lan-
guage L⊆X ∗ which is not ssh-closed.

Proof. Let X = {a; b; : : :} and let f(a)= (1 2)∈S3; f(b)= (1 3)∈S3 and f(c)=
e∈S3 for any c∈X \{a; b}. Let L= {u∈X ∗ |f(u)= e}. By the preceding lemma it
follows that L is ins-closed and dipdel-closed. Since f(a2b2)= e; a2b2 ∈L. On the other
hand, since f(abab)(1)= 3; f(abab) 6= e and abab =∈L. Therefore L is not commutative
and, according to Proposition 5.3, L is not ssh-closed.

A language L⊆X ∗ is called re
ective i� uv∈L; u; v∈X ∗ imply vu∈L.

Proposition 5.7. Let L⊆X ∗ be an ins-closed language that is dipdel-closed. Then L
is re
ective.

Proof. Let uv∈L. Then uvuv∈L. Since uvuv= u(vu)v and uv∈L; vu∈L.

Note that if L⊆X ∗ is an sh-closed language, L 6= {1} and Ln=L\X [n] where X [n] =⋃n
i=1 X

i then Ln is sh-closed for any n. This implies that there does not exist a minimal
sh-closed language.
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